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1. INTRODUCTION

This thesis deals with the problem of robust control system design,

i.e., a control system which will work in the presence of perturbations in

the structure or the parameters of the system. The problem of robust

control is important for several reasons. Control systems are typically

designed on the basis of linear time-invariant models of real systems.

However, they must operate on the actual systems which may be neither linear

nor time invariant. Therefore it is important to design a controller which

will work even though the system and the model are not identical. Some

examples of perturbations to the system which a controller should be able to

handle are sensor failures, actuator failures, different operating conditions,

and uncertainties in the plant model. This design approach may also be used

to determine which sensors are really essential in order to control the

system and which are not [1,21].

Two common approaches to robust control system design are

adaptive control and fixed gain control. The idea of adaptive control is

to continually modify the structure and parameters of the controller in

order to achieve the best possible performance given the current information

available about the system. One problem with this approach is that inputs

to the system which lead to quick and accurate identification do not

usually lead to the best system performance. The reverse also holds. The

idea behind fixed gain control is to find one fixed gain controller which

will work well over a range of system perturbations. In this case, the

system performance at any particular point may not be the best possible [1].
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The fixed gain output or state feedback controller is the simplest

form of controller for the type of systems considered in this thesis. Its

simplicity makes this type of controller attractive. If a fixed gain

controller can be found such that the design specifications for a given

problem can be satisfied for all operating conditions, there is no need for

a more complex one. Schy [3] has shown that in many cases a fixed gain

controller will be able to accommodate a large variation of system parameters.

On the other hand, the fixed gain solution may indicate that a more complicated

controller is required. Even in this case,however, the design process which

led to that conclusion will have provided insight into the problem and possible

solutions (1].

There are many approaches to the design of fixed gain controllers.

One frequently used design technique is to represent the design criteria by

a quadratic cost function which is then minimized. Formulating the problem

as an optimization problem makes the problem computationally tractable.

Also,some typical design criteriasuch as minimizing the control energy or

the control rate,can be easily represented by a linear quadratic cost

function. Kalman (4], Anderson and Moore (5], and Safonov and Athans (6] all

discuss this approach to designing state feedback regulators. Harvey and

Pope [7,8] and Vinkler and Wood (9] compare the behavior of these methods

when applied to some aircraft problems. The basic difficulty with this

approach is that the optimization framework is an artificial device. While

some design constraints can easily be incorporated into a single cost

function, many other very common ones such as damping ratios, bandwidth, etc.

often cannot easily be represented this way.

. . . .. I l I i .. .. . i ; , . . . . . . , . . . . . . . .
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Design criteria are often more naturally translated into con-

straints on the location of the closed loop system eigenvalues in the

complex plane or on the location of other system parameters. Sirisena and

Choi (2] use a pseudoinverse method to design a constant output controller

which places the closed loop system poles in prescribed regions of the

complex plane. One problem with their method is that their algorithm could

converge to a local minimum outside the constraint region. Also even if

the algorithm fails to converge to the minimum for a wide range of initial

guesses for the feedback gains, one cannot be absolutely sure that no

solution exists. Ackermann [l] maps regions in the complex plane into regions

in the space of feedback gains and suggests doing the actual design in the

gain space. This method can also be used for finding gains which are robust

with respect to known parameter variations. Regions in the complex plane,

each representing the constraints for a certain set of parameters, are all

mapped into the gain space. The intersection of all these regions is the

set of gains for which all the constraints are satisfied. This method has

the advantage over the previous one that the designer will be able to see

graphically if no solution exists. It has the disadvantage that for systems

with more than two or three feedback gains, finding a graphical representa-

tion of the whole region of possible gains becomes complicated. In this

*case, it would be simpler to find one good point rather than the whole

region.

Zakian and Al-Naib [10] represent all design criteria as a set of

linear inequalities, *i(P)< Ci where P is the vector of system parameters

which may be varied and C is constant. This formulation yields regions in
i

the parameter space where the parameters must lie. A numerical method of

. ... .. . L , . : .... . . .. .... . . . '" j"' A" ' .4 ' 1 " '
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obtaining a solution is presented. This method involves starting with

fairly loose constraints (to insure a region of intersection) and making

the constraints more stringent at each iteration until an acceptable

solution is found. For this formulation, some trial and error is usually

necessary to find a realistic set of inequalities [10]. Kreisselmeier and

Steinhauser [11] used a similar formulation to design a controller for an F4-C

plane. However, they solved the system of inequalities using a min-maxj optimization method rather than the shrinking boundary method described above.

This thesis develops an approach to the design of constant output

feedback controllers for linear systems which incorporates many of the

approaches mentioned above. It is assumed that some of the design criteria

can be represented as restrictions on the locations of the closed-loop

system eigenvalues in the complex plane. Additional constraints are

represented by a quadratic cost function. The design problem is then to

choose a set of constant output feedback gains that minimize the cost

function subject to the constraints. This formulation is most similar to

that of Sirisena and Choi [2] except that their cost function is simply a

measure of how much the constraints are violated; whereas, for this thesis,

the cost function incorporates additional design specifications which are

not represented by the constraints.

There are several advantages to this approach. The advantage of

using constant output feedback lies in the simplicity of its implementation.

Another advantage is that unlike the unconstrained optimization formulation,

all the design specifications need not be represented by a single cost

function. Those that can be most naturally expressed as regions in the

complex plane, such as damping ratios, bandwidth requirements, step responses,
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etc. are expressed that way. Others, such as minimum energy control, input

rate, etc., are represented in the cost function. Whereas some of the

previously mentioned constraint methods yield a whole region of acceptable

gains, this approach yields a particular point in the region.

IThe method used to solve the problem is also slightly different from

those described above. The problem is first reformulated as an optimization

over the feedback gains. Then this optimization problem is solved using an

augmented Lagrangian approach.

In Section 2, a precise mathematical formulation of the problem is

given. Section 3 discusses the nonlinear programming method which was used

to solve the problem. Section 4 derives the gradients which are necessary to

solve the problem. In Section 5, a second order numerical example is

presented. The purpose of presenting this example is to discuss some of

the problems involved in implementing this method. Finally, this approach

to controller design is applied to the design of a fixed gain controller for

the linearized longitudinal flight dynamics of an F-4 aircraft. Four flight

conditions in both normal and failure modes will be considered simultaneously.

Design constraints for the normal and failure modes will be assumed to be

specified separately. This example was studied by Franklin [121 using

Ackermann's mapping technique [1]. The results of both methods are then

discussed.

t7
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2. THE PROBLEM AND ITS REFORMULATION

The purpose of this section is to present a precise mathematical

formulation of the problem discussed in the Introduction of this thesis and

then to reformulate the problem in a form that is computationally easier to

work with. As mentioned in the Introduction, this thesis deals with the

problem of using output feedback to control a fixed structure system. The

design problem is to choose the constant feedback gains which are best with

respect to some cost function such that the closed loop system satisfies

certain design specifications. It is assumed that these design specifications

can be represented most naturally as regions in the complex plane where the

eigenvalues of the closed loop system must be located. The system is also

assumed to be linear time invariant.

The precise problem formulation is as follows:

min J - Eff[xT(t)Qx(t)+ u T(t)Ru(t)]dt} (1)
kIS 0

subject to

i(t) - Ax(t) + Bu(t); x(t) - x °  (2)

E{x} 0; E(xT} - X°
0 0 0 0

(t)- Cx(t) (3)

u(t) - -Ky(t) (4)

gi(X) <0 i - 1,... N (5)

where x(t)E Rn, u(t)e Rm , and y(t)C Rp . S is the space of permissible feed-

back gains. The expectation of the integral is used so that the cost, J, is

independent of any particular initial state of the system, but depends instead

on an average initial condition of all the possible initial states. Q and R

. - .
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are nonnegative definite constant matrices chosen so that given some

predetermined criteria, by minimizing J, one is improving the closed loop

behavior of the system. For example, if Q is the zero matrix and R is the

identity, J represents the total energy used to control the system. By

minimizing J, one is minimizing the total energy used. The functions, gi(M),

represent constraints on the location of the eigenvalues, X, of the closed

loop system in the complex plane. One desirable feature of this formulation

is that not all the design specifications have to be incorporated into a

single cost function. Constraints,such as damping ratio, bandwidth, etc.,

that can be more naturally represented as regions in the complex plane can be

represented in this way. Others, such as input rate, minimum energy control,

etc., can be incorporated into the cost function.

The problem (l)-(5) looks computationally difficult to solve;

however, it can be reformulated as follows:

mn J - 1/2 tr{M(k)P} (6)
kr=S

subject to

gi(_A) 4 0 1- 1,...,N (7)

where
S - {k/(A-BKC) is asymptotically stable} (8)

M(k) - Q + C TKTRKC (9)

A(k) - A- BKC (10)

X - E{x(O)x T(O)} (11)

A(k)P + PA T(k) X -x . (12)
0

Here P is a constant positive definite matrix; k is a vector comprised of the

elements of the matrix K; x(0) is the initial state of the system; and A(k) is

___
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the closed loop system for a given k. Given this formulation, the cost J is

easily found. To solve for J directly from (1), one would first have to calcu-

late x(t) for each k; whereas to solve (6), one has to solve the Lyapunov

equation (12) for each k and then perform a few simple matrix operations.

The derivation of (6)-(12) from (1)-(5) is standard [13] but

included for completeness.

Substitute (3) in (4) and (4) in (1):

J - I E{f [xTQx+ (-KCx)TR(-KCx)]dt}

- 1,2E{f xT[Q+ cTKTRKC]xdt}. (13)

Define M(k) by equation (9)

J u V {f xTMxdt}
0

- tr{'/ 2 E{f xTMxdtl}
= /3 FE~tr~xTMx}}dt

0
= 12 f E{tr{Mxx

T }dr

- '2trf E{MxxT}dt}

' tr{Mf E{xx }dt}. (14)

0

The second equality follows because the trace of a scalar is just equal to

the scalar; the third follows due to the comutativity of the trace,

integration, and expectation operators, as does the fifth; the fourth is a

property of the trace operator; and the sixth is because M is independent of

both t and x(t). Now define P as follows and rewrite (14)

P f E{xxT}dt (15)
0

J '1 tr{M(k)P} (16)



9

which is of the form of J in equation (6). Moreover, since

x(t) - e ix(O) (17)

where A is the closed loop matrix (10),

P- f'EleAtx(O)xT(O)e Tt }dt
0

-T
e fitE{x(0)(0) e tdt. (18)

0

At
The second equality follows since the state transition matrix, e , is inde-

pendent of the initial state of the system. Finally, for stable A, P is the

positive definite matrix which satisfies [14]

A(k)P + PAT(k) - -X . (19)

Thus the reformulated problem (6)-(12) is indeed equivalent to the original

problem (l)-(5).

Problem (6)-(12) is a mathematical representation of the problem

(described in the introduction of this thesis) of choosing constant output

feedback gains for a linear time invariant system subject to certain design

criteria which are represented by a cost function and constraints on the

locations of eigenvalues in the complex plane. The question of how to solve

the problem (6)-(12) remains. Problem (6)-(12) is a nonlinear constrained

minimization over a finite dimensional space. The next section will discuss

methods of solving such a problem.
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3. NONLINEAR PROGRAMMING SOLUTION PROCEDURE

There are several ways to solve a nonlinear problem of the form

(6)-(12). As stated previously, the basic problem is

min J(k) (20)
WES

subject to

gi(k) 0 i- 1,...,N (21)

where the exact form of the cost function is defined explicitly by equations

(6), (11), and (12) in Section 2 of this thesis. Two of the most common

methods of solving a problem of this type are penalty function and Lagrange

multiplier methods [15]. Each of these methods has certain problems (to be

described below) which are inherent to the method. However, by using a

combination of both methods, these problems can be avoided and a better

approximation to the solution for (20)-(21) can be obtained (16].

In its simplest form the Lagrange multiplier method solves the

following problem (15]

max w(d) (22)

subject to

di > 0 i- 1,...,N (23)

where de RN and
N

o(d) - mn J(k) + jidigi(k). (24)
eS

This problem is often easier to solve since the nonlinear constraints, gi(k),

have been replaced by simple linear ones. The problem (22)-(23) is the dual

problem of problem (20)-(21). The duality theorem states that as long as

¢(d) > -* for some positive di's and J(k) < = for some ES, the solution to

<,,
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(22)-(23) is less than or equal to the solution to (20)-(21). When the

solution to (22)-(23) is strictly less than the solution to (20)-(21), a

duality gap exists [15]. For convex functions with convex constraints, this

difficulty does not occur. The solution to (22)-(23) is also the solution

for (20)-(21). However, for a general function, J(k), a duality gap may

exist so that the solution to (22)-(23) is a lower bound on the solution to

(20)-(21), rather than the time minimum [15].

On the other hand, exterior penalty functions solve the problem

[25]:

mn J(k) + cH(k) (25)

where c is some positive constant, S1 is the region in R
m where all the

constraints, (21), are satisfied, and H(k) is a functional with these

properties:

H(k) > 0 for all ke Rm (26)

H(k) is continuous (27)

H(k) - 0 <-> kG S1. (28)

As long as kE S1 , H(k)= 0, so problems (20)-(21) and (25) are identical.

When k is outside Sit the function J(k)+ cH(k) is large. As c becomes large,

the minimum of J(k)+ cH(k) approaches S The most common penalty function

is
N 2

H(k) a !lmax[0,(k )  . (29)--(k i-l gk

For this function, the value of H(k) is the sum of the squares of the

distances by which each constraint is violated, so the penalty term increases

rapidly when the distance k is outside S The advantage of this method is

Wks
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that problem (25) is an unconstrained minimization problem which is often

easier to solve than problem (20)-(21). The disadvantage of this approach

is that to obtain a good approximation to problem (20)-(21), c must become

large. However, as c approaches infinity, the matrix of second partial

derivatives of J(k_)+ cH(k) (the Hessian) becomes increasingly ill

conditioned. Many algorithms for unconstrained minimization depend on

either the Hessian or an approximation of the Hessian to find the minimum.

If the Hessian is ill-conditioned, these algorithms will converge very slowly

[15].

By combining penalty function methods with Lagrange multiplier

methods, one can eliminate the duality gap and use a smaller value of c, thus

improving the conditioning of the Hessian at the solution (17]. Using the

penalty function H(k), in (29), consider the problem:

min J(k) + cH(k) (30)
krS

subject to

gi(k) ' i- l,..,N. (31)

Given the properties of H(k), problem (30)-(31) is equivalent to (20)-(21).

The dual of problem (30)-(31) is

max g(d) (32)

subject to

d£ ; 0 1- 1,...,N (33)

where

N
g9(d) - inf{J(k)+ cH(k)+ Z d gtk) }. (34)c WS

io,1

.,.S,,dV#d q
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Theorem 1: There exists a ce R with 0 < c < - such that the solution to problem

(32)-(33) is also the solution to problem (30)-(31).

Proof: See Bertsekas (18].

Theorem 1 implies there is no duality gap for problems (30)-(31) and (32)-

(33). Moreover, since the value of c needed to solve this problem exactly

is finite, the structure of the Hessian is more favorable for solving the

problem.

Bertsekas [19] discusses a variation of problems (30)-(31) and

(32)-(33) and suggests a very straightforward way to solve the maximization

over d. He suggests solving the problem

max gc (d) (35)

subject to

di > 0 i= 1,...,N (36)

where
1 N 2

gc(dk) - inf{J(k)+ 1 -!Ml{max[0,di+c'gi(k)I2_d 2}. (37)

For the case where the ith constraint is violated, the corresponding term in

the suation is

2
d gi(k) + c'/2 gi(k) (38)

which is identical to the corresponding term in (34) for c- c'/2 and H(k) as

defined in (29). For the case where the ith constraint is satisfied, but

di + c'gi(k) > 0 (39)

equation (38) also applies; and, when

di + c'gi(k) < 0 (40)

the corresponding term in the summation is
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1 2  (41)

Bertsekas has shown that the solution to (35)-(36) is equivalent to that of

problem (20)-(21) for all values of c' greater than some lower bound (

exists and is finite).

One can solve the problem (35)-(36) iteratively, viewing the

iteration over d as a fixed stepsize gradient problem [19]. The partial

of g c(d,k) with respect to di is

ag (d,k)c a max[-di/c', gi(k)] i-l,...,N. (42)di

Hence the gradient of gc (d,k) with respect to d is the vector of these

partials. The appropriate update of d is
-J+l

d - d + c'Vg (d,k). (43)
.-JIl -=J

For a(k) and gi(k) convex, Bertsekas has shown that his method has demon-

strated global convergence for a wide range of step sizes. The main advan-

tages of using this method is that it combines the advantages of both penalty

function and Lagrange multiplier methods and that the iterative method to

solve the maximization over d is very simple.

There remains the problem of solving the minimization over k for a

fixed d. This problem can be solved using a variable metric algorithm. At

each iteration of the routine the user must supply the value of the function

to be minimized and its gradient. From this information, the routine builds

up an approximation to the inverse Hessian which improves as the routine

gathers information from more points [20].

1Such as MINOPC of the M.I.T. LID's software library programmed
by J. Carrig.
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To solve for g c(d,k) in (37) at each iteration, one must solve

for J(k) and gi(k), i-l,...,N. For problem (6)-(12) from Section 2, J(k)

can be solved using (6) and (12). The constraints g1(X(k)) are chosen by

the designer and thus are also readily available. The gradients are also

needed at each iteration. Taking the partials of g c(d,k) in (37) with

respect to k,

ag c (dIE J(k)+ O dg c/(kk)
ii+ mx0, d+C/g(k)] ak (44)

i i

Thus to solve problem (34), the gradient of the constraints and of the cost

with respect to k must be provided. Section 4 discusses the computations

required to solve for VkJ(k) and 7kg(k).
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4. COST AND CONSTRAINT GRADIENT CALCULATIONS

As described in Sectidn 3 our approach to.the solution of problem

(6)-(12) is to solve the equivalent problem (35)-(37) iteratively. To solve

the minimization over k, for a fixed d, the gradient of J(k) with respect to

k and the gradient of gi(X(k)) with respect to k must be computed. Using

linear operator theory, one can derive a fairly simple expression for the

gradient of J(k). Using eigenvalue sensitivity theory, one can derive an

expression for the gradients of the constraints with respect to k (22].

The gradient of J(k) with respect to K is as follows:

Theorem 2: 7K J(k)  (RKCP-BT EP)C T

where P and Z are solutions of

-TA Z + EA + M(k) - 0

1P +P T+X - o (45)
0

and A and M(k) are defined in (10) and (9) respectively.

Proof: See (13].

_ J(k.) is found by rearranging VKJ(k) (k is a vector of the elements of the

matrix K).

To compute the gradient of the constraints with respect to k,

one must compute the gradient of the eigenvalues with respect to k. After

finding the latter, one can use the rules of implicit differentiation to

find the former. Consider equation (46).

0 (46)

where wT is the left eigenvector of A and v is the right eigenvector

corresponding to eigenvalue X. Since !t.T and v are the eigenvectors of A,

(46) is true. When the Frechet differential of a function F(k) exists, it

is given by (13]:
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F (k, Ak) F (k +e n0 (47)
De F -k+ Ok

The Frechet differential (47) can also be written in terms of an inner

product as

6 F(k, Ak) <V Fk),Ak) (48)

whr (VF(k),Ak) - tr{VF T(k)Ak}. (49)

Take the Frechet differential of both sides of (46)

T -T - Taw (A-XI)v + w (A-XI)6v + w (6A-6XI)v - 0. (50)

Again since w and v are eigenvectors, the first two terms are identically

zero, thus

W T 6x_ - w T6iv. (51)

Since 6X is a scalar,

6xw Tv - w T6iv. (52)

Since w Tv is also scalar

WT

W V

Notice, however, that if w Tv-Q, equation (53) will not hold. If wiT 0-,

Tthen the left eigenvector, vis perpendicular to the right eigenvector, v.

This only happens when A has a Jordan block of dimension greater than one.

Continuing, from definition (10) and (48)

6A(K,AK) i( eK

[A-B(K+ cLAK)C]E.

* BAKC. (54)
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Using definition (48).

- tr{vxT W)K}. (55)

Substituting (54) and (55) in (53):

3ET(-B&KC) X
tr{VX T ()AK} TI~ Wv

T
wT(BAK)Cy

Cv TB

w B

Since (56) must hold for an arbitrary AK,

V(K) - T- (57)

or

BTw vTCT
VW T (58)

W V

is found by rearranging 7K(K) (k is a vector comprised of the elements

of K).

Define Xi in terms of two real variables, a and w "

X, a ci + jW" V(59)

Then i (60)

1 Real(-) (60)

I imaginary( 1) (61)
i -ki

The constraint functions gi(X) from equation (7) are considered functions

of the two real variables, a and w. For the purposes of problem (6)-(12)

each constraint will be a function of only one eigenvalue. If all the
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eigenvalues must lie inside a particular boundary, then n of the constraints

I will be the equation for the boundary (one for each eigenvalue). Given this

situation,

____\ag( /a)_ka ak _ + (62)
A jw

Since the regions in the complex plane are chosen by the designer, it will

be assumed that the regions are chosen so that the partials with respect to

a and w exist. For the same reason, the functions gi(ouw) are known explicitly,

and thus, so are the partials. Thus using equations (58)-(62), the gradient

of the constraints with respect to the feedback gains, k, can be calculated.

In summary, both the gradients of the constraints with respect to

k and the gradient of the cost J(k), as well as the values of the constraints

and the cost, can be calculated given a point k. Using this information, one

can find the solution to (6)-(12) by solving the equivalent problem (32)-(34)

as described in Section 3. The next section will discuss some of the specific

details and problems involved in implementing this method to solve the

reformulated problem (6)-(12).
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5. SECOND ORDER EXAMPLE

The purpose of the numerical example of this section is to demon-

strate how well the method developed in Section 2 to solve problem (l)-(6)

works on a simple second order example. The problem is as follows:

min J = 12f u (t)u(t)dt (63)
WS 0

subject to

_(t) - Ax(t) + Bu(t) (64)

u(t) -- [k1 k2]x(t) (65)

S - (k/(A-Bk) is asymptotically stable} (66)

A B - [] (67)
-5 i

gi(oW) < 0 i1,4 (68)

where a and w are the real and imaginary parts of the eigenvalues of the

closed loop system. The constraints are (see Figure 1):

g1 (o,w) - w--2.6o (69)

g2 (a,w) - w+2.6o (70)

g3 (o,w) - 4.0804-a 2 - 2 (71)

g4 (o,w) - a2+w2 - 53.1441. (72)

Each of these four equations must be satisfied for both eigenvalues so there

are actually eight constraints.

Examining a second order system with a single input is particularly

convenient for demonstrating the behavior of this algorithm. First, for a

second order system one can derive explicit equations relating the feedback
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gains to the eigenvalues of the closed loop system. Second, equations

mapping the boundaries in the complex plane to boundaries in k-space (the

space of feedback gains) can be obtained using the mapping method described

in []. For this second order system and reasonable boundaries, like those

given in (69)-(72), the boundaries in k-space are not too complex (Figure 2).

Since the minimization is actually over k in the k-plane, Figure 2 shows

exactly what the constraints are in this space.

The closed loop characteristic equation for this system is

X2 + (2+k 2)X + (26+5k +k 2) 0. (73)

Applying the quadratic formula to (73) yields

AIA = -(1+ .5k2 ) + .5(k2 - 20k I - 100) 2 (74)

Taking the partials of XI and X 2with respect to k1 and k2 9

a1 2 11k 21,2 O 2 (75)
k1

a i,2 = -.5 + .5k2(k - 20k1 - 100)
- 2. (76)

ak2

From (75) and (76), one can see that these partials have discontinuities

precisely at the boundary where the closed loop system poles change from a

complex pair to two real poles or vice versa. Not only are these partials

discontinuous at this boundary, their magnitude approaches infinity as the

poles approach this boundary. The equation of this boundary in k-space is

k2 - 20k - 100 = 0 (77)

2 1

which corresponds to boundary 9 in Figure 2.
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The other boundaries in Figure 2 correspond to the boundaries in

the complex plane (Figure 1) as follows: the large circle (Figure 1) maps

into the triangle formed by 1, 2, and 3 (Figure 2), the small circle maps

into the triangle formed by 4, 5, and 6, the two lines into boundaries 7 and

8. The region enclosed by the solid line in Figure 2 is the region in the

k-plane where all the constraints (69)-(72) are satisfied. The reason for

choosing these boundaries in the complex plane is that such boundaries do

occur in real problems (e.g., the aircraft example in the next section) as

constraints on the locations of closed loop system poles. A nice feature of

using circles for boundaries in the complex plane is that for second order

systems circles map into triangles in the k-plane. Hence some of the

boundaries in the k-plane are straight lines (21].

The problem (63)-(68) is to find the minimum energy control subject

to the indicated constraints. Since system (64) is stable, the minimum

energy control without constraints corresponds to zero gain. With the feed-

back gains set to zero, the poles of (64) are

X1'A2 = -l+j5. (78)

With the given constraints (Figure 1), the minimum energy feedback gains were

found to be

k - [-.273 +1.68] (79)

which places the closed loop poles at

12 - -1.84 + J4.788. (80)

This answer makes sense. From Figure 2, one can see that this

point k (points b) is approximately the point inside the constraint region

closest to the origin. From Figure 1, one can see that the closed loop

*
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,. eigenvalues (points a) are about as close to the open loop eigenvalues

(points b) as possible given the constraints. The algorithm converged to

the minimum k (79) for a wide range of initial guesses for k. Initial

guesses for k which placed the closed loop poles outside the large circle

and to the left of boundary 1 were the only ones for which the algorithm did

not converge to the value of k given in (79).

The region in the complex plane for which the algorithm did-not

converge corresponds to the area in the k-plane (Figure 2) to the right of

line 1 and just below curve 9. The fact that the algorithm could not converge

from these points can be explained by the discontinuities in the partials of

the eigenvalues with respect to k mentioned in (75)-(77). Consider point c

(Figure 2) as a typical point in this region. It corresponds to a complex

pole pair outside the large circle in Figure 1. Line 1 in the k-plane

represents the boundary for a complex pole pair crossing this circle; thus,

the negative of the gradient in the k-plane for these points points towards

line 1 and nearly perpendicular to it. Moving in this direction should

reduce the cost function (37). However notice that from point c, for

example, movement in this direction will lead to guesses for k which fall

above or on curve 9. A point on curve 9 corresponds to a double real root

for which the partials of the eigenvalues with respect to k are infinite.

This will obviously cause problems. Notice also that for two real poles,

the direction of decreasing cost is determined by boundary 2; whereas for a

complex pair, the direction of decreasing cost is determined by line 1. For all

these points -points for which the routine would not converge to (79) -the

minimization routine found points which approached boundary 9. However, the

algorithm was not able to move across or along the boundary. In summary,
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the derivatives of the constraints with respect to the feedback gains are

not continuous. This fact can lead to convergence problems. However, one

can avoid these problems by choosing a better initial guess for k (and

lower values for c).

This example was also used to study the behavior of the algorithm

with respect to changes in the constant c' in (37). As discussed in the

section on nonlinear programming, for a very large value of c', the minimi-

zation over k converges to a solution which is close to the solution to the

actual problem, in this case (63)-(68). For a smaller c', each iteration

over k stops farther from the real solution than with a larger c', but the

iterations over d lead more quickly to the true solution of the problem. For

this problem, c' equal to 2000 seemed to work best. The minimization over k

led to a solution which was very close to the final solution of the algorithm.

The iterations over d merely served to bring the point a bit closer to the

boundaries (within 10 - , instead of 10- ). This was true even for smaller

values of c', 20 and 200. The smaller values of c' led to more iterations

over d, but fewer over k at each substep. For c' equal to 2, the first

iteration over k did converge to a solution which was different from the

solution with c' equal to 2000. However the iterations over d led to the

same final solution as with c' equal to 2000. In terms of total function

evaluations, c' equal to 2000 was the most efficient; moreover, the solutions

for smaller values of c' were not significantly different from those with c'

equal to 2000.

To summarize the results for this example, this algorithm works

provided a good initial guess for k and a reasonable value of c' are used.

!
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Provided these two conditions are satisfied, the minimum energy feedback gains

for problem (63)-(68) are

k - (-.273 +1.68]. (81)

This gain places the closed loop system poles at

X1,X -1.84 + J4.788. (82)

The next two sections will present a more complex example and discuss some

results for that example.

4 *
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6. AIRPLANE EXAMPLE

The system studied in this example is a linearized model of the

longitudinal motion of a fighter aircraft. The description of the system

model and the design criteria are taken from [12] with minor differences (see

below). The solution method in [12] is the parameter mapping technique

described in [1]. This thesis will use the nonlinear programming method

developed in the previous sections.

The particular aircraft considered in this example is a McDonnell-

Douglas F4-E with horizontal canards. A complete description of the F4-E is

given in [23]. The behavior of the aircraft was modeled by four sets of

system matrices, one for each of four flight conditions (see Tables 1-3).

One design objective was to find a set of constant feedback gains which place

the closed loop system poles in certain regions of the complex plane

(different regions for each flight condition, see Figure 4). The second was

to find a set of gains which satisfied the above criteria and also placed

the closed loop system poles within certain emergency regions in the case

that a sensor failed (Figure 5). The condition of a sensor failure was

considered to be equivalent to setting the corresponding feedback gain equal

to zero.

Figure 3 shows some of the important quantities for studying the

longitudinal motion of the F4-E. For this plane, two dominant modes deter-

mine the longitudinal rigid body motion of the plane- the phugoid mode which

is very slow and the short period mode which has the most effect on the

handling qualities of the plane. Uncontrolled, the short period mode is

unstable for all subsonic flight conditions (see Table 2).
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Table 1. Physical definition of the four flight conditions

Flight Condition Mach Altitude

1 .5 5000'f

2 .85 5000'

3 .9 35000'

4 1.5 35000'

Table 2. Open loop eigenvalues

Flight Conditions Short Period Mode Phugiod Mode

1 -3.07, +1.23 -14

2 -4.9 , +1.78 -14

3 -1.87, +.56 -14

4 -.87 +j4.3 -14
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Table 3. Aero data for equation (84)

Flight Flight Flight Flight
Condition #1 Condition #2 Condition #3 Condition #4

a1 -.9896 -1.702 -.6607 -.5162

a12 17.41 50.72 18.11 26.96

a1 3  96.15 263.5 84.34 178.9

a21 .2648 .2201 .08201 -.6896

*22 -.8512 -1.418 -.6587 -1.225

a23 -11.39 -31.99 -10.81 -30.38

b1  -97.78 -272.2 -85.09 -175.8

, ' dl i ad I li d/l 1
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The two major control surfaces available for controlling the short

period mode are the elevator position, 6 e, and the canard position, 6 (see

Figure 3). The simplified model used for these actuators was

6--a6 +a 6  (83)corn

where 6 is the actuator position, 6 is the commanded actuator position,and

com

a is the equivalent bandwidth of the actuator which was assumed to be 14 rad/s.

Since the canard command was found to be proportional to the elevator

command, a state model was derived which incorporated these two quantities

into one state 6 which represents the effective control of the elevator ande

the canard together.

The other two quantities that are often used to control the pitch

axis are the pitch rate (q) and the normal accelerator (N z) (see Figure 3).

These two quantities, as well as 6e' were assumed to be available for

feedback. The following is the system model for this airplane, based on

these quantities. For a complete description of the derivation of these

equations see [12].

N all a12 a13 N

d -a a ]q l 0ua]4
dt 21 22 a23  q u (84)

1 0 0- N

y(t) - 1 (85)

0 0 _

u(t) = -ky(t). (86)

1Franklin (12] used only the first two variables in the feedback
design.

LA
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As previously stated, a was assumed to be 14 rad/s. The values aij and b1

are different for each flight condition and are given in Table 3. The matrix

k is to be determined.

One design problem for this airplane was to choose k such that the

closed loop eigenvalues for each flight condition are in certain regions in

the complex plane (Figure 4). Ideally one would like to find one set of

gains which worked for all four flight conditions. The constraints on the

short period eigenvalues are given by restrictions on the damping and the

natural frequency of the short period mode. The characteristic equation for

these eigenvalues is

X 2 + 2E w X - 0 (87)SP SP sp

where 4sp is the damping and w Sp is the natural frequency. Under normal

operating conditions (i.e., no sensor failures), sp and w sp are required

.35 < E S 4 1.3 
(88)

Sa < W sp-4 wb (89)

where wa and wb depend on the flight condition (see Table 4). For the case

when one of the sensors fail, ESP and wsp must satisfy

.15 < Esp (90)

wc s (91)sp

where w c depends on the flight condition (Table 4). For the emergency

siruation, the actuator pole is also required to satisfy (90)-(91). For the

nonemergency situation, the actuator pole (X a) is required to satisfy

• i - m L . ... ... ...... .. . . .. ... . .. . .. ....a
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ub < Xa < 70 rad/s. (92)

These regions in the complex plane are shown in Figures 4 and 5.

For this thesis, an additional design criterion was added. The

feedback gains were to be chosen such that the minimum total control energy

is used given the constraints on the locations of the closed-loop poles

described above. The appropriate cost function to minimize is

min J - fuT(e)u(t)dt (93)
teS 0

where S is the set of feedback gains for which the closed loop system (84)-

(86) is asymptotically stable. Taken together with appropriate equations

for the constraints in Figures 4 and 5, equations (84)-(86) and (93) repre-

sent a problem of the form (1)-(6) in Section 2. Thus the method of solution

developed in the previous sections of this thesis can be applied. The

results for this example are discussed in the next section.

Table 4. Frequency limits which determine boundaries
in Figures 4 and 5

Flight Flight Flight Flight
Condition #1 Condition #2 Condition #3 Condition #4

w (rad/s) 2.02 3.50 2.19 3.29
a

w.(rad/s) 7.23 12.6 7.86 11.8

Wc (rad/9) 1.53 2.65 1.65 2.49
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7. RESULTS AND DISCUSSION FOR AIRPLANE EXAMPLE

The design problem for the F4-E airplane considered by this

thesis is to find one set of constant feedback gains for which the closed

loop system poles are in the appropriate region in the complex plane for each

one of the four flight conditions under normal operating conditions. After

finding such a solution, the next problem is to look for a set of gains that

satisfies the above criteria and also is robust with respect to sensor

failures.

First, each flight condition was studied separately to see if a

fixed gain controller could be found to satisfy the constraints under normal

operating conditions. As mentioned in Section 5, a good initial guess for

the feedback gains is important for the algorithm to converge properly.

Since the problem is to find the constrained minimum for J in (93),

one sensible starting point is the set of gains which correspond to the

unconstrained minimum of J. One can find these gains simply enough by

solving a Riccati equation for each set of system matrices (24]. These gains

were used and gains for a fixed gain controller were found for each flight

condition. The next step was to find one set of gains which would work for

all four flight conditions.

Such a set of gains was found both for the case when all three

states (84) were available and for the case when only the first two were

available. Franklin [12] considered the latter case. Rather than looking

for a particular set of gains, the procedure used in [12] was to map the

constraints from the complex plane (Figure 4) into the space of feedback

gains. The entire region of possible gains which satisfy the constraints
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(Figure 6) was found. Using the method described in this thesis, the

minimum energy k using only two gains was found to be (see Table 5)

k - [-2.8281124 x 10 - 2  -2.0652172 x 10 -1]. (94)

This point is marked in Figure 6 and is near the boundary of the enclosed

region found by Franklin, at the point approximately nearest the origin.

Thus the results presented in this thesis are consistent with Franklin's.

For the case with three feedback gains, the minimum energy k was found to be

(see Table 6)

k - [-3.8498269x10 -2.7574095x10 - 1  3.3295187x10 - 1 ]  (95)

An important measure of system performance is the C* response
N

discussed in [12]. The C* is a linear combination of the normal acceleration
N

and the pitch rate of the plane, given by

C*- (N +12.43q)/k* (96)

where k is the stationary value of C* and is used for normalization. Thec N

C* response to a step input should fall in the region shown in Figure 7.
N

Figure 8 shows this response for each of the four flight conditions. The

first column consists of the responses for the design presented in this

thesis with k as given in equation (95). Comparing these responses with

Figure 7, one can see that they do lie within the required region. The

second column contains the C* responses for the following gain matrixN

k - t-.115 -. 8) (97)

which is the design used in [12]. These C* time responses appear to be
N

faster and to satisfy the requirement given by Figure 7 better than those

presented in this thesis. This is not surprising; the gains (97) were

. . . ,~ ~ ~~~~ 4,.. , ... .. ....
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Figure 6. Region of possible gains which satisfy the constraints under
normal operating conditions for all four flight conditions.
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Table 5. Minimum energy feedback gains: normal operating
condition solution (2 gains)

k- [-2.8281124x1- 2 _2.0652172xl 1

Conigto Closed Loop Eigenvalues

1 -2.0483019, -2.0200008, -14.537826

2 -3.1624007± J5.2143045, -18.493321

3 -1.589176± J1.7992842, -14.547498

4 -2.1992634± J5.8851873, -16.308839

Table 6. Minimum energy feedback gains: normal operating
condition solution (3 gains)

k- (-3.8498269x10 - -2.757409540- 3.3295187xl0-

FlightClsdLo ievus
Condition #ClsdLoEinvue

1 -2.0194637± J3.3183791x10 9, -20.227559

2 -3.3792113± J5.0261318, -25.502133

3 -1.5977817± J1.7690526, -20.060981

4 -2.2968881± J5.7580029, -22.569046

LI.~.
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chosen on the basis of the C* criterion. The criterion used to choose the
N

gains for this thesis was the minimization of the control energy. Thus,

slower * responses should be expected.

More specifically, the design criterion used to choose the gains in

equation (95) was the minimization of the control energy required to bring the

system back to equilibrium from a disturbance. Figure 9 shows u(t) for each

of the four flight conditions (the first column contains the ones for this

thesis; the second for those of [12]). From these figures, one can see that

the controls for this thesis are considerably smaller than the controls which

result from [12]. However, the system is stabilized faster (but at the

expense of actuator control) for the gain (97).

Franklin choose his feedback gains (97) by looking at the time

responses for several points and picking the best one. For this thesis, the

gains (95) were chosen by using a cost function which represented the

minimum energy control. By changing the cost function or the constraint

boundaries in the complex plane, one could easily incorporate the C* response

criterion into the design. One could also choose the cost and the boundaries

so that the solution would be a compromise between the minimum energy control

and a fast response. Moreover, the results from this design indicate where

trade-offs can be made and how to make them. In short, using a cost function

to choose a set of feedback gains may provide more insight than trial and

error alone.

Franklin [12] also mapped the emergency regions in the complex

plane (Figure 5) into the gain space for the case with only two feedback

gains. Unfortunately,the region for which all the constraints for both the

normal and the emergency situations are satisfied does not intersect either

',.---.t*J. m~m



44

Chato Franklin

Q3 I I I0.8

0.6

a2 04

0.0

0 -021 I

0.! 0.8

02 0.6I 0.4
0.1

0.2

-01 -02 L
0a3 0.8

02- 0.6

0.4

a.2

0 -0c

-al1l -0-2-

Q.6

0.4
0.1

0.2

-10 0.5 1.0O 1.5 ao 0L6 0.5 1.0 1.L5 -2.0

Figure 9. Control inputs for two designs.



45

axis in the gain space. For the problem with only the first two states

available for feedback, this means no set of gains satisfying the constraints

is robust with respect to the failure of either sensor.

In light of the results of [12], the problem of a robust controller

was considered for the case with three feedback gains. For flight condition 4,

a fixed gain using only the first two states was found which satisfied all

the constraints and was robust with respect to either the first, the second,

or both sensors failing. Adding the third gain set equal to zero, yields a

set of three gains which is completely robust. However, this result is not

surprising since the open loop poles for flight condition 4 (see Table 2)

already satisfy the emergency specifications (see Figure 5 and Table 4). For

the other three flight conditions considered individually, no gains could be

found which were robust with respect to the first sensor failing. Thus none

could be found for all the flight conditions taken together. When considered

individually, a set of gains which is robust with respect to the failure of

the second sensor was found for each flight condition. A set of gains which

is robust with respect to the second sensor failing was also found when the

first three flight conditions were considered together (see Table 7).

Unfortunately, when all four flight conditions were considered, no common

solution which was robust with respect to the &econd sensor could be found.

A solution which is robust with respect to the third sensor failing is just

the solution given in Table 5 with a third gain equal to zero added. These

results seem to indicate that a fixed gain controller is not adequate to

satisfy the robustness requirements for this example.

While studying this example, some of the problems in implementing

the algorithm for the second order example in Section 5 were also problems
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Table 7. Minimum energy feedback gains which are robust with
respect to the failure of the second sensor (for the
first 3 flight conditions only)

k- [-5.0138477x10- 2 4.0115944xl 1 5.0676513x10 I

Flight Sensor #2 Closed Loop Eigenvalues
Condition #

1NF -2.7084034, -2.0196952, -23.109953

F -.72136579+ J1.3337152, -26.395321

NF -4.0968046+ j5.1326, -29.668796

F -.77106637+ j5.0911232, -36.320273

NF -1.8964697+ J1.7951444, -22.887455
3

F -.49872359+ J2.0622586, -25.682948

N~F: Sensor #2 has not failed

F: Sensor #2 has failed
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for this example. First, the gradient of the cost with respect to the

feedback gains is discontinuous at a double real pole (see Section 4). For

the minimum energy gains in Table 5, the eigenvalues of the first flight

condition seem to be converging to a double real pole on the boundary of

the constraints. Since the gradient is discontinuous at this point, it was

necessary to try initial guesses for k close to the apparent solution but on

both sides of the discontinuity to be sure the algorithm was not hanging up

there. The algorithm converged back to the double pole from both directions

indicating that that point was indeed the solution. Also, an intellegent

initial guess for k was important in order to avoid being hung up at the

double root boundaries away from the solution. In that case, a pole placement

which places the poles on the opposite side of the double root boundary could

be done. Using those gains as a new starting point might allow the algorithm

to converge to the real solution.

Another observation was that the value chosen for c' in (37) affected

the final solution returned by the algorithm. For large values of c'

(200-2000), the algorithm converged quickly to the boundary of the constraint

regioai, but had trouble moving along the boundary to the minimum with

iterations over d (35)-(36). As explained in Section 3, this is due to the

ill conditioning of the Hessian for large values of c'. For smaller values

of c', the minimization over k converged to a solution outside the boundary

of the constraint region. The maximization over d forced the solution to

the boundary. For this particular example, choosing c' equal to a small

number for the initial iteration over k and then increasing it gradually for

subsequent iterations to enforce the constraints more quickly seemed to work



48

well. The results in this section are for c' equal to I for the initial

iteration and doubled thereafter.

Summarizing the results of this section, the algorithm developed

in this thesis was applied to the problem of designing a controller for the

F4-E aircraft. A fixed gain controller was found which satisfied the

design specifications under normal operating conditions. However, a fixed

gain controller which was robust to either sensor failure was not possible.

This example also served to re-emphasize some of the inherent problems with

this design technique: the discontinuities of the gradient, the initial

guess for k, and the choice of c'.

I . ,, . .. .1
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8. CONCLUSION AND SUMMARY

* This thesis has dealt with one method of solving the problem of

designing a fixed gain controller for a linear time invariant system when

some of the design criteria are represented as constraints on the location of

the closed loop system eigenvalues in the complex plane and others are repre-

sented by a quadratic cost function which is to be minimized. First, the

original problem (l)-(5) is reformulated to yield (6)-(12). In the latter

form, the cost function is easier to calculate. Second, problem (6)-(12) is

solved by an augmented Lagrangian method. The problem is a max-min problem.

A variable metric method is used to solve the minimization over k. A fixed

step size method is used to solve the maximization over d [19]. Third,

expressions for the gradients needed to solve (32)-(34) are derived.

Two examples are studied: a simple second order numerical example

and a model of the longitudinal motion of a F4-E plane. Both examples serve

to point out several problems with implementing the solution of (32)-(34).

First, there are discontinuities in the gradients for the case when a complex

pair of system poles change to a real pair or vice versa. If the algorithm

gets hung up at such a point, a new starting point on the other side of the

boundary may help. Second, the value of c' in (34) must be chosen appro-

priately for a given problem. Too large a value of c' causes slow convergence

of the algorithm. Too small a value yields a solution outside the boundary.

The best approach seems to be to choose c' small for the first iteration and

increase it thereafter. Finally, a good initial guess for k is important in

order for the algorithm to converge properly.
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There are advantages to this design method. First, it has the

ability to incorporate diverse design criteria such as minimum energy

control, rate of change of input, constraints on the location of poles in

the complex plane, etc. Second, multi-input, multi-output systems can be

considered (at least in theory). Third, it has the ability to handle larger

systems than some of the other methods used to solve this type of problem.

Finally, it provides insight into the effects of the various design

constraints. It can be used to determine which of the design specifications

can be satisfied and which ones may be too stringent.

I.
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